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A representation of the solution of the heat-conduction equation is
examined in the form of a series, arranged in increasing order of
derivatives of boundary time functions.

In some applications of heat-conduction theory use
is made of a representation of the solution of the heat-
conduction equation based on a series expansion in
powers of the heat capacity of the medium [1, 2].

In the general case the solution of the one-dimen-
sional heat conduction equation with coefficients de-
pending on the coordinates may be represented by a
geries arranged in ascending order of derivatives of
boundary time functions. In the case of a homogeneous
medium, this series is also arranged in inverse pow-
ers of the thermal diffusivity. The representation in
question, in particular, gives a convenient form of
solution for problems relating to the propagation of
heat in multilayer media, when the use of an opera-
tional method usually entails a large volume of calcu-
lation,

Let the heat-conduction equation be given in the in-
terval a < x <b as
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with boundary conditions of the form
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where one of the constants By or B, B for definite-
ness, is different from zero, or
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We shall suppose that the boundary functions f(t)
and q(t) are continuous in some region 0 =t =< t;, and
have derivatives of all orders:
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Integrating (1) twice with respect to x witha = x =<
< b, and taking (2) into account, we obtain, from the

continuity of the functions T, K(x)(8T/0x) and 8T /8t
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In the case of boundary conditions of type (2a), a
result of a similar nature will be found for the function
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Relation (5) is an integral equation in the variable
x and a differential equation with respect to the vari-
able t. Its solution, constructed from the method of
successive approximations, is
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Qu(x, B =Q(x.7),

is a solution of the heat-conduction problem without
the initial condition. It also gives a representation of
the solution of the original problem (1)-(3) after the
lapse of a certain time interval,

Solution (6) is determined to an accuracy up to an
additive function w(x, t), satisfying the homogeneous
equation
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By suitable choice of this function we may satisfy the
initial condition (3), Then w(x, t) will have the form [3]
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where Ap and uy (x) are characteristic values and nor-
malized eigenfunctions of the homogeneous integral
equation with symmetrical kernel
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and T(x, 0) is the value of function (6) when t = 0,
It may be shown that an estimate exists for the
quantity w(x, t)
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The convergence of series (6) may be established
from analogy with the convergence of the successive
approximations in the theory of Fredholm equations
{4]. Then a sufficient condition for convergence has
the form

Bv <1, (10)
where
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If we restrict series (6) to the first n terms, the
resulting error is
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where
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In the case of a homogeneous medium c¢(x) = ¢,
Kx)=K, ¢/K=1/n, b — a =1, and the quantities
Tn(x, t) and B may be represented in the form
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where the function -T_n (%, t) and the quantity B do not
depend on the heat capacity, and so the expansion (6)
coincides with the expansion of the temperature func-
tion in a series of inverse powers of the thermal dif-
fusivity.

NOTATION
T—temperature; t—time; %, §—coordinates; K(x)— thermal con-

ductivity; c(x)—volume heat capacity; f(t) and q(t)—boundary func-
tions.
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